Cationic nanoparticles for delivery of amphotericin B: preparation, characterization and activity in vitro
نویسندگان
چکیده
BACKGROUND Particulate systems are well known to be able to deliver drugs with high efficiency and fewer adverse side effects, possibly by endocytosis of the drug carriers. On the other hand, cationic compounds and assemblies exhibit a general antimicrobial action. In this work, cationic nanoparticles built from drug, cationic lipid and polyelectrolytes are shown to be excellent and active carriers of amphotericin B against C. albicans. RESULTS Assemblies of amphotericin B and cationic lipid at extreme drug to lipid molar ratios were wrapped by polyelectrolytes forming cationic nanoparticles of high colloid stability and fungicidal activity against Candida albicans. Experimental strategy involved dynamic light scattering for particle sizing, zeta-potential analysis, colloid stability, determination of AmB aggregation state by optical spectra and determination of activity against Candida albicans in vitro from cfu countings. CONCLUSION Novel and effective cationic particles delivered amphotericin B to C. albicans in vitro with optimal efficiency seldom achieved from drug, cationic lipid or cationic polyelectrolyte in separate. The multiple assembly of antibiotic, cationic lipid and cationic polyelctrolyte, consecutively nanostructured in each particle produced a strategical and effective attack against the fungus cells.
منابع مشابه
Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملPreparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملPreparation, Characterization and in vitro Studies of Chitosan Nanoparticles Containing Androctonus Crassicauda scorpion venom
Many strategies have been developed to improve vaccine delivery in the past decade. The aim of the current study was to develop a nanoparticulate system based on ionic gelation between chitosan and tripolyphosphate in order to load Androctonus Crassicauda scorpion venom. The best formulation was selected according to the highest association efficiency, loading capacity, optimum particle size an...
متن کاملPreparation, statistical optimization and in vitro characterization of solid lipid nanoparticles as a potential vehicle for transdermal delivery of tramadol hydrochloride as a hydrophilic Compound
As encapsulation of hydrophilic drugs in the solid lipid nanoparticles (SLNs) is still a challenging issue, the aim of this study was to prepare SLNs containing tramadol hydrochloride as a hydrophilic compound.The SLNs were prepared using glycerol monostearate (GMS), soy lecithin and tween 80 by double emulsification-solvent evaporation technique. The nanoparticles were optimized through a cent...
متن کاملPLGA-based macrophage-mediated drug targeting for the treatment of visceral leishmaniasis
The potential of PLGA-nanoparticles as a carrier of amphotericin B and doxorubicin against visceral leishmaniasis was evaluated by macrophage-mediated drug targeting approach. PLGA-nanoparticles were modified by coating them with macrophage-specific ligand-lectin. Prior to in-vitro studies, characterization studies were carried out systematically include particle size, surface morphology, perce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Nanobiotechnology
دوره 6 شماره
صفحات -
تاریخ انتشار 2008